viernes, 28 de agosto de 2009

QUIMICA






Hidrocarburos
Hidrocarburos, en química orgánica, familia de compuestos orgánicos que contienen carbono e hidrógeno. Son los compuestos orgánicos más simples y pueden ser considerados como las sustancias principales de las que se derivan todos los demás compuestos orgánicos. Los hidrocarburos se clasifican en dos grupos principales, de cadena abierta y cíclicos. En los compuestos de cadena abierta que contienen más de un átomo de carbono, los átomos de carbono están unidos entre sí formando una cadena lineal que puede tener una o más ramificaciones. En los compuestos cíclicos, los átomos de carbono forman uno o más anillos cerrados. Los dos grupos principales se subdividen según su comportamiento químico en saturados e insaturados.


ALCANOSLos hidrocarburos saturados de cadena abierta forman un grupo homólogo denominado alcanos o parafinas. La composición de todos los miembros del grupo responde a la fórmula CnH2n +2, donde n es el número de átomos de carbono de la molécula. Los cuatro primeros miembros del grupo son el metano, CH4, el etano, C2H6, el propano, C3H8 y el butano, C4H10. Todos los miembros alcanos son inertes, es decir, no reaccionan fácilmente a temperaturas ordinarias con reactivos como los ácidos, los álcalis o los oxidantes. Los primeros cuatro miembros del grupo son gases a presión y temperatura ambiente; los miembros intermedios son líquidos, y los miembros más pesados son semisólidos o sólidos. El petróleo contiene una gran variedad de hidrocarburos saturados, y los productos del petróleo como la gasolina, el aceite combustible, los aceites lubricantes y la parafina consisten principalmente en mezclas de estos hidrocarburos que varían de los líquidos más ligeros a los sólidos.ALQUENOSEl grupo de los alquenos u olefinas está formado por hidrocarburos de cadena abierta en los que existe un doble enlace entre dos átomos de carbono. La fórmula general del grupo es CnH2n, donde n es el número de átomos de carbono. Al igual que los alcanos, los miembros más bajos son gases, los compuestos intermedios son líquidos y los más altos son sólidos. Los compuestos del grupo de los alquenos son más reactivos químicamente que los compuestos saturados. Reaccionan fácilmente con sustancias como los halógenos, adicionando átomos de halógeno a los dobles enlaces. No se encuentran en los productos naturales, pero se obtienen en la destilación destructiva de sustancias naturales complejas, como el carbón, y en grandes cantidades en las refinerías de petróleo, especialmente en el proceso de craqueo. El primer miembro de la serie es el eteno, C2H4. Los dienos contienen dos dobles enlaces entre las parejas de átomos de carbono de la molécula. Están relacionados con los hidrocarburos complejos del caucho o hule natural y son importantes en la fabricación de caucho y plásticos sintéticos. Son miembros importantes de esta serie el butadieno, C4H6, y el isopreno, C5H8.

ALQUINOS

Los miembros del grupo de los alquinos contienen un triple enlace entre dos átomos de carbono de la molécula. Son muy activos químicamente y no se presentan libres en la naturaleza. Forman un grupo análogo al de los alquenos. El primero y más importante de los miembros del grupo es el etino, C2H2. La fórmula general del grupo es CnHn donde n es el número de átomos de carbono.HIDROCARBUROS CÍCLICOSEl más simple de los hidrocarburos cíclicos saturados o cicloalcanos es el ciclopropano, C3H6, cuyas moléculas están formadas por tres átomos de carbono con dos átomos de hidrógeno unidos a cada uno de ellos. El ciclopropano es un poco más reactivo que el correspondiente alcano de cadena abierta, el propano, C3H8. Otros cicloalcanos forman parte del petróleo.
Varios hidrocarburos cíclicos insaturados, cuya fórmula general es C10H16, se encuentran en algunos aceites naturales aromáticos y se destilan de los materiales vegetales. Esos hidrocarburos se llaman terpenos e incluyen el pineno (en la trementina) y el limoneno (en los aceites de limón y naranja).
El grupo más importante entre los hidrocarburos cíclicos insaturados es el de los aromáticos, que se encuentran en el alquitrán de hulla. Aunque los hidrocarburos aromáticos presentan a veces insaturación, es decir, tienden a adicionar otras sustancias, sus principales reacciones producen la sustitución de átomos de hidrógeno por otros tipos o grupos de átomos. Entre los hidrocarburos aromáticos se encuentran el benceno, el tolueno, el antraceno y el naftaleno.
_________________________________________________________________________Petróleo

Petróleo




líquido oleoso bituminoso de origen natural compuesto por diferentes sustancias orgánicas. También recibe los nombres de petróleo crudo, crudo petrolífero o simplemente “crudo”. Se encuentra en grandes cantidades bajo la superficie terrestre y se emplea como combustible y materia prima para la industria química. Las sociedades industriales modernas lo utilizan sobre todo para lograr un grado de movilidad por tierra, mar y aire impensable hace sólo 100 años. Además, el petróleo y sus derivados se emplean para fabricar medicinas, fertilizantes, productos alimenticios, objetos de plástico, materiales de construcción, pinturas y textiles, y para generar electricidad.


En la actualidad, los distintos países dependen del petróleo y sus productos; la estructura física y la forma de vida de las aglomeraciones periféricas que rodean las grandes ciudades son posibles gracias a un suministro de petróleo relativamente abundante y barato. Sin embargo, en los últimos años ha descendido la disponibilidad mundial de esta materia, y su costo relativo ha aumentado. Es probable que, a mediados del siglo XXI, el petróleo ya no se use comercialmente de forma habitual.


CARATERISTICAS DEL PETROLEO

Todos los tipos de petróleo se componen de hidrocarburos, aunque también suelen contener unos pocos compuestos de azufre y de oxígeno; el contenido de azufre varía entre un 0,1 y un 5%. El petróleo contiene elementos gaseosos, líquidos y sólidos. La consistencia del petróleo varía desde un líquido tan poco viscoso como la gasolina hasta un líquido tan espeso que apenas fluye. Por lo general, hay pequeñas cantidades de compuestos gaseosos disueltos en el líquido; cuando las cantidades de estos compuestos son mayores, el yacimiento de petróleo está asociado con un depósito de gas natural.
Existen tres grandes categorías de petróleo crudo: de tipo parafínico, de tipo asfáltico y de base mixta. El petróleo parafínico está compuesto por moléculas en las que el número de átomos de hidrógeno es siempre superior en dos unidades al doble del número de átomos de carbono. Las moléculas características del petróleo asfáltico son los naftenos, que contienen exactamente el doble de átomos de hidrógeno que de carbono. El petróleo de base mixta contiene hidrocarburos de ambos tipos.


FORMACION DEL PETROLEO

El petróleo se forma bajo la superficie terrestre por la descomposición de organismos marinos. Los restos de animales minúsculos que viven en el mar —y, en menor medida, los de organismos terrestres arrastrados al mar por los ríos o los de plantas que crecen en los fondos marinos— se mezclan con las finas arenas y limos que caen al fondo en las cuencas marinas tranquilas. Estos depósitos, ricos en materiales orgánicos, se convierten en rocas generadoras de crudo. El proceso comenzó hace muchos millones de años, cuando surgieron los organismos vivos en grandes cantidades, y continúa hasta el presente. Los sedimentos se van haciendo más espesos y se hunden en el suelo marino bajo su propio peso. A medida que se van acumulando depósitos adicionales, la presión sobre los situados más abajo se multiplica por varios miles, y la temperatura aumenta en varios cientos de grados. El cieno y la arena se endurecen y se convierten en esquistos y arenisca; los carbonatos precipitados y los restos de caparazones se convierten en caliza, y los tejidos blandos de los organismos muertos se transforman en petróleo y gas natural.
Una vez formado el petróleo, éste fluye hacia arriba a través de la corteza terrestre porque su densidad es menor que la de las salmueras que saturan los intersticios de los esquistos, arenas y rocas de carbonato que constituyen dicha corteza. El petróleo y el gas natural ascienden a través de los poros microscópicos de los sedimentos situados por encima. Con frecuencia acaban encontrando un esquisto impermeable o una capa de roca densa: el petróleo queda atrapado, formando un depósito. Sin embargo, una parte significativa del petróleo no se topa con rocas impermeables, sino que brota en la superficie terrestre o en el fondo del océano. Entre los depósitos superficiales también figuran los lagos bituminosos y las filtraciones de gas natural.


EVOLUCION HISTORICA DE LA UTILIZACION DEL PETROLEO

Los seres humanos conocen estos depósitos superficiales de petróleo crudo desde hace miles de años. Durante mucho tiempo se emplearon para fines limitados, como el calafateado de barcos, la impermeabilización de tejidos o la fabricación de antorchas. En la época del renacimiento, el petróleo de algunos depósitos superficiales se destilaba para obtener lubricantes y productos medicinales, pero la auténtica explotación del petróleo no comenzó hasta el siglo XIX. Para entonces, la Revolución Industrial había desencadenado una búsqueda de nuevos combustibles y los cambios sociales hacían necesario un aceite bueno y barato para las lámparas. El aceite de ballena sólo se lo podían permitir los ricos, las velas de sebo tenían un olor desagradable y el gas del alumbrado sólo llegaba a los edificios de construcción reciente situados en zonas metropolitanas.
La búsqueda de un combustible mejor para las lámparas llevó a una gran demanda de “aceite de piedra” o petróleo, y a mediados del siglo XIX varios científicos desarrollaron procesos para su uso comercial. Por ejemplo, el británico James Young y otros comenzaron a fabricar diversos productos a partir del petróleo, aunque después Young centró sus actividades en la destilación de carbón y la explotación de esquistos petrolíferos. En 1852, el físico y geólogo canadiense Abraham Gessner obtuvo una patente para producir a partir de petróleo crudo un combustible para lámparas relativamente limpio y barato, el queroseno. Tres años más tarde, el químico estadounidense Benjamin Silliman publicó un informe que indicaba la amplia gama de productos útiles que se podían obtener mediante la destilación del petróleo.
Con ello empezó la búsqueda de mayores suministros de petróleo. Hacía años que la gente sabía que en los pozos perforados para obtener agua o sal se producían en ocasiones filtraciones de petróleo, por lo que pronto surgió la idea de realizar perforaciones para obtenerlo. Los primeros pozos de este tipo se perforaron en Alemania entre 1857 y 1859, pero el acontecimiento que obtuvo fama mundial fue la perforación de un pozo petrolífero cerca de Oil Creek, en Pennsylvania (Estados Unidos), llevada a cabo por Edwin L. Drake, el Coronel, en 1859. Drake, contratado por el industrial estadounidense George H. Bissell —que también proporcionó a Sillimar muestras de rocas petrolíferas para su informe—, perforó en busca del supuesto “depósito matriz”, del que parece ser surgían las filtraciones de petróleo de Pennsylvania occidental. El depósito encontrado por Drake era poco profundo (21,2 m) y el petróleo era de tipo parafínico, muy fluido y fácil de destilar.
El éxito de Drake marcó el comienzo del rápido crecimiento de la moderna industria petrolera. La comunidad científica no tardó en prestar atención al petróleo, y se desarrollaron hipótesis coherentes para explicar su formación, su movimiento ascendente y su confinamiento en depósitos. Con la invención del automóvil y las necesidades energéticas surgidas en la I Guerra Mundial, la industria del petróleo se convirtió en uno de los cimientos de la sociedad industrial.
PROSPERACIONPara encontrar petróleo bajo tierra, los geólogos deben buscar una cuenca sedimentaria con esquistos ricos en materia orgánica, que lleven enterrados el suficiente tiempo para que se haya formado petróleo (desde unas decenas de millones de años hasta 100 millones de años). Además, el petróleo tiene que haber ascendido hasta depósitos capaces de contener grandes cantidades de líquido. La existencia de petróleo crudo en la corteza terrestre se ve limitada por estas condiciones. Sin embargo, los geólogos y geofísicos especializados en petróleo disponen de numerosos medios para identificar zonas propicias para la perforación. Por ejemplo, la confección de mapas de superficie de los afloramientos de lechos sedimentarios permite interpretar las características geológicas del subsuelo, y esta información puede verse complementada por datos obtenidos perforando la corteza y extrayendo testigos o muestras de las capas rocosas. Por otra parte, las técnicas de prospección sísmica —que estudian de forma cada vez más precisa la reflexión y refracción de las ondas de sonido propagadas a través de la Tierra— revelan detalles de la estructura e interrelación de las distintas capas subterráneas. Pero, en último término, la única forma de demostrar la existencia de petróleo en el subsuelo es perforando un pozo. De hecho, casi todas las zonas petrolíferas del mundo fueron identificadas en un principio por la presencia de filtraciones superficiales, y la mayoría de los yacimientos fueron descubiertos por prospectores particulares que se basaban más en la intuición que en la ciencia.
Un campo petrolífero puede incluir más de un yacimiento, es decir, más de una única acumulación continua y delimitada de petróleo. De hecho, puede haber varios depósitos apilados uno encima de otro, aislados por capas intermedias de esquistos y rocas impermeables. El tamaño de esos depósitos varía desde unas pocas decenas de hectáreas hasta decenas de kilómetros cuadrados, y su espesor va desde unos pocos metros hasta varios cientos o incluso más. La mayor parte del petróleo descubierto y explotado en el mundo se encuentra en unos pocos yacimientos grandes.


REPRODUCCION PRIMARIA

La mayoría de los pozos petrolíferos se perforan con el método rotatorio. En este método, una torre sostiene la cadena de perforación, formada por una serie de tubos acoplados. La cadena se hace girar uniéndola al banco giratorio situado en el suelo de la torre. La broca de perforación situada al final de la cadena suele estar formada por tres ruedas cónicas con dientes de acero endurecido. La broca se lleva a la superficie por un sistema continuo de fluido circulante impulsado por una bomba.
El crudo atrapado en un yacimiento se encuentra bajo presión; si no estuviera atrapado por rocas impermeables habría seguido ascendiendo debido a su flotabilidad hasta brotar en la superficie terrestre. Por ello, cuando se perfora un pozo que llega hasta una acumulación de petróleo a presión, el petróleo se expande hacia la zona de baja presión creada por el pozo en comunicación con la superficie terrestre. Sin embargo, a medida que el pozo se llena de líquido aparece una presión contraria sobre el depósito, y pronto se detendría el flujo de líquido adicional hacia el pozo si no se dieran otras circunstancias. La mayor parte del petróleo contiene una cantidad significativa de gas natural en disolución, que se mantiene disuelto debido a las altas presiones del depósito. Cuando el petróleo pasa a la zona de baja presión del pozo, el gas deja de estar disuelto y empieza a expandirse. Esta expansión, junto con la dilución de la columna de petróleo por el gas, menos denso, hace que el petróleo aflore a la superficie.
A medida que se continúa retirando líquido del yacimiento, la presión del mismo va disminuyendo poco a poco, así como la cantidad de gas disuelto. Esto hace que la velocidad de flujo del líquido hacia el pozo se haga menor y se libere menos gas. Cuando el petróleo ya no llega a la superficie se hace necesario instalar una bomba en el pozo para continuar extrayendo el crudo.
Finalmente, la velocidad de flujo del petróleo se hace tan pequeña, y el coste de elevarlo hacia la superficie aumenta tanto, que el coste de funcionamiento del pozo es mayor que los ingresos que se pueden obtener por la venta del crudo (una vez descontados los gastos de explotación, impuestos, seguros y rendimientos del capital). Esto significa que se ha alcanzado el límite económico del pozo, por lo que se abandona su explotación.


RECUPERACION DEL PETROLEO

En el apartado anterior se ha descrito el ciclo de producción primaria por expansión del gas disuelto, sin añadir ninguna energía al yacimiento, salvo la requerida para elevar el líquido en los pozos de producción. Sin embargo, cuando la producción primaria se acerca a su límite económico, es posible que sólo se haya extraído un pequeño porcentaje del crudo almacenado, que en ningún caso supera el 25%. Por ello, la industria petrolera ha desarrollado sistemas para complementar esta producción primaria, que utiliza fundamentalmente la energía natural del yacimiento. Los sistemas complementarios, conocidos como tecnología de recuperación mejorada de petróleo, pueden aumentar la recuperación de crudo, pero sólo con el coste adicional de suministrar energía externa al depósito. Con estos métodos se ha aumentado la recuperación de crudo hasta alcanzar una media global del 33% del petróleo presente. En la actualidad se emplean dos sistemas complementarios: la inyección de agua y la inyección de vapor.


PERFORACION SUBTERRANEA

Otro método para aumentar la producción de los campos petrolíferos —y uno de los logros más impresionantes de la ingeniería en las últimas décadas— es la construcción y empleo de equipos de perforación sobre el mar. Estos equipos de perforación se instalan, manejan y mantienen en una plataforma situada lejos de la costa, en aguas de una profundidad de hasta varios cientos de metros. La plataforma puede ser flotante o descansar sobre pilotes anclados en el fondo marino, y resiste a las olas, el viento y —en las regiones árticas— los hielos.
Al igual que en los equipos tradicionales, la torre es en esencia un elemento para suspender y hacer girar el tubo de perforación, en cuyo extremo va situada la broca; a medida que ésta va penetrando en la corteza terrestre se van añadiendo tramos adicionales de tubo a la cadena de perforación. La fuerza necesaria para penetrar en el suelo procede del propio peso del tubo de perforación. Para facilitar la eliminación de la roca perforada se hace circular constantemente lodo a través del tubo de perforación, que sale por toberas situadas en la broca y sube a la superficie a través del espacio situado entre el tubo y el pozo (el diámetro de la broca es algo mayor que el del tubo). Con este método se han perforado con éxito pozos con una profundidad de más de 6,4 km desde la superficie del mar. La perforación submarina ha llevado a la explotación de una importante reserva adicional de petróleo.


INGENIERIA DEL PETROLEO

Los conocimientos y técnicas empleadas por los ingenieros de prospección y refinado proceden de casi todos los campos de la ciencia y la ingeniería. Por ejemplo, en los equipos de prospección hay geólogos especializados en la confección de mapas de superficie, que tratan de reconstruir la configuración de los diversos estratos sedimentarios del subsuelo, lo que puede proporcionar claves sobre la presencia de depósitos de petróleo. Después, los especialistas en el subsuelo estudian las muestras de las perforaciones e interpretan los datos sobre formaciones subterráneas transmitidos a sensores situados en la superficie desde dispositivos de sondeo eléctricos, acústicos y nucleares introducidos en el pozo de prospección mediante un cable. Los sismólogos interpretan las complejas señales acústicas que llegan a la superficie después de propagarse a través de la corteza terrestre. Los geoquímicos estudian la transformación de la materia orgánica y los métodos para detectar y predecir la existencia de dicha materia en los estratos subterráneos. Por su parte, los físicos, químicos, biólogos y matemáticos se encargan de la investigación básica y del desarrollo de técnicas de prospección complejas.
Los ingenieros especializados son los responsables de la explotación de los yacimientos de petróleo descubiertos. Por lo general, son especialistas en una de las categorías de operaciones de producción: instalaciones de perforación y de superficie, análisis petrofísico y petroquímico del depósito, estimación de las reservas, especificación de las prácticas de explotación óptima y control, y seguimiento de la producción. Muchos de estos especialistas son ingenieros químicos, industriales o eléctricos, o bien físicos, químicos, matemáticos o geólogos.
El ingeniero de perforación determina y supervisa el programa concreto para perforar el pozo, el tipo de lodo de inyección empleado, la forma de fijación del revestimiento de acero que aísla los estratos productivos de los demás estratos subterráneos, y la forma de exponer los estratos productivos del pozo perforado. Los especialistas en ingeniería de instalaciones especifican y diseñan los equipos de superficie que se deben instalar para la producción, las bombas de los pozos, los sistemas para medir el yacimiento, recoger los fluidos producidos y separar el gas, los tanques de almacenamiento, el sistema de deshidratación para eliminar el agua del petróleo obtenido y las instalaciones para sistemas de recuperación mejorada.
Los ingenieros petrofísicos y geológicos, después de interpretar los datos suministrados por el análisis de los testigos o muestras geológicas y por los diferentes dispositivos de sondeo, desarrollan una descripción de la roca del yacimiento y de su permeabilidad, porosidad y continuidad. Después, los ingenieros de depósito desarrollan un plan para determinar el número y localización de los pozos que se perforarán en el depósito, el ritmo de producción adecuado para una recuperación óptima y las necesidades de tecnologías de recuperación complementarias. Estos ingenieros también realizan una estimación de la productividad y las reservas totales del depósito, analizando el tiempo, los costes de explotación y el valor del crudo producido. Por último, los ingenieros de producción supervisan el funcionamiento de los pozos; además, recomiendan y ponen en práctica acciones correctoras como fracturación, acidificación, profundización, ajuste de la proporción entre gas y petróleo o agua y petróleo, o cualesquiera otras medidas que mejoren el rendimiento económico del yacimiento.
PRODUCCIONEl petróleo es quizá la materia prima más útil y versátil de las explotadas. En 1999, el primer país productor era Arabia Saudí, que producía 412 millones de toneladas, un 11,9% del total mundial. La producción mundial era de 3.452,2 millones de toneladas, de las cuales, Estados Unidos produjo un 10,3%, Rusia un 8,8%, Irán un 5,1%, México un 4,7% y Venezuela un 4,6 por ciento.


RESERVAS

Las reservas mundiales de crudo —la cantidad de petróleo que los expertos saben a ciencia cierta que se puede extraer de forma económica— se estiman en 1 billón de barriles.

PROYECCIONES

Es probable que en los próximos años se realicen descubrimientos adicionales y se desarrollen nuevas tecnologías que permitan aumentar la eficiencia de recuperación de los recursos ya conocidos. En cualquier caso, el suministro de crudo alcanzará hasta las primeras décadas del siglo XXI. Sin embargo, según los expertos, no existen casi perspectivas de que los nuevos descubrimientos e invenciones amplíen la disponibilidad de petróleo barato mucho más allá de ese periodo.

ALTERNATIVAS

A la vista de las reservas disponibles y de las pesimistas proyecciones, parece evidente que en el futuro harán falta fuentes de energía alternativas, aunque existen muy pocas opciones si se tienen en cuenta las ingentes necesidades de energía del mundo industrializado. La recuperación comercial de esquistos petrolíferos y la producción de crudo sintético todavía tienen que demostrar su viabilidad, y hay serias dudas sobre la competitividad de los costes de producción y los volúmenes de producción que se pueden lograr con estas posibles nuevas fuentes.
Los distintos problemas y posibilidades de fuentes alternativas, como la energía geotérmica, la energía solar y la energía nuclear, se analizan en el artículo Recursos energéticos. El único combustible alternativo capaz de cubrir las enormes necesidades de energía del mundo actual es el carbón, cuya disponibilidad planetaria está firmemente establecida. El aumento previsto de su empleo llevaría aparejado un aumento del uso de la energía eléctrica basada en el carbón, que se utilizaría para un número cada vez mayor de procesos industriales. Es posible que se pueda regular su uso gracias a la moderna tecnología de ingeniería, con un reducido aumento de los costes de capital y de explotación.
_________________________________________________________________________Carbón
Carbón

combustible sólido de origen vegetal. En eras geológicas remotas, y sobre todo en el periodo carbonífero (que comenzó hace 362,5 millones de años), grandes extensiones del planeta estaban cubiertas por una vegetación abundantísima que crecía en pantanos. Muchas de estas plantas eran tipos de helechos, algunos de ellos tan grandes como árboles. Al morir las plantas, quedaban sumergidas por el agua y se descomponían poco a poco. A medida que se producía esa descomposición, la materia vegetal perdía átomos de oxígeno e hidrógeno, con lo que quedaba un depósito con un elevado porcentaje de carbono. Así se formaron las turberas (véase Turba). Con el paso del tiempo, la arena y lodo del agua se fueron acumulando sobre algunas de estas turberas. La presión de las capas superiores, así como los movimientos de la corteza terrestre y, en ocasiones, el calor volcánico, comprimieron y endurecieron los depósitos hasta formar carbón.
Los diferentes tipos de carbón se clasifican según su contenido de carbono fijo. La turba, la primera etapa en la formación de carbón, tiene un bajo contenido de carbono fijo y un alto índice de humedad. El lignito, el carbón de peor calidad, tiene un contenido de carbono mayor. El carbón bituminoso tiene un contenido aún mayor, por lo que su poder calorífico también es superior. La antracita es el carbón con el mayor contenido en carbono y el máximo poder calorífico. La presión y el calor adicionales pueden transformar el carbón en grafito, que es prácticamente carbono puro. Además de carbono, el carbón contiene hidrocarburos volátiles, azufre y nitrógeno, así como diferentes minerales que quedan como cenizas al quemarlo.
Ciertos productos de la combustión del carbón pueden tener efectos perjudiciales sobre el medio ambiente. Al quemar carbón se produce dióxido de carbono entre otros compuestos. Muchos científicos creen que debido al uso extendido del carbón y otros combustibles fósiles (como el petróleo) la cantidad de dióxido de carbono en la atmósfera terrestre podría aumentar hasta el punto de provocar cambios en el clima de la Tierra (véase Calentamiento global; Efecto invernadero). Por otra parte, el azufre y el nitrógeno del carbón forman óxidos durante la combustión que pueden contribuir a la formación de lluvia ácida.
Todos los tipos de carbón tienen alguna utilidad. La turba se utiliza desde hace siglos como combustible para fuegos abiertos, y más recientemente se han fabricado briquetas de turba y lignito para quemarlas en hornos. La siderurgia emplea carbón metalúrgico o coque, un combustible destilado que es casi carbono puro. El proceso de producción de coque proporciona muchos productos químicos secundarios, como el alquitrán de hulla, que se emplean para fabricar otros productos. El carbón también se utilizó desde principios del siglo XIX hasta la II Guerra Mundial para producir combustibles gaseosos, o para fabricar productos petroleros mediante licuefacción. La fabricación de combustibles gaseosos y otros productos a partir del carbón disminuyó al crecer la disponibilidad del gas natural. En la década de 1980, sin embargo, las naciones industrializadas volvieron a interesarse por la gasificación y por nuevas tecnologías limpias de carbón. La licuefacción del carbón cubre todas las necesidades de petróleo de Sudáfrica.

TECNOLOGIAS LIMPIAS DEL CARBON

Las tecnologías limpias de carbón son una nueva generación de procesos avanzados para su utilización; algunas pueden ser, desde un punto de vista comercial, viables en los próximos años. En general, estas tecnologías son más limpias y eficientes y menos costosas que los procesos convencionales. La mayoría altera la estructura básica del carbón antes de la combustión, durante la misma o después de ella. Con ello reducen las emisiones de impurezas como azufre y óxido de nitrógeno y aumentan la eficiencia de la producción energética.
En la década de 1980, algunos gobiernos emprendieron programas de colaboración con la industria privada para fomentar el desarrollo de las tecnologías limpias de carbón más prometedoras, como los métodos mejorados para limpiar el carbón, la combustión en lecho fluido, la inyección de sorbentes de horno y la desulfuración avanzada de gases de combustión.

YACIMIENTOS Y RESERVAS

El carbón se encuentra en casi todas las regiones del mundo, pero en la actualidad los únicos depósitos de importancia comercial están en Europa, Asia, Australia, Sudáfrica y América del Norte.
En Gran Bretaña, que fue el líder mundial en producción de carbón hasta el siglo XX, existen yacimientos en el sur de Escocia, Inglaterra y Gales. En Europa occidental hay importantes depósitos de carbón en toda la región francesa de Alsacia, en Bélgica y en los valles alemanes del Sarre y el Ruhr. En Centroeuropa hay yacimientos en Polonia, la República Checa y Hungría. El yacimiento de carbón más extenso y valioso de la ex Unión Soviética es el situado en la cuenca del Donets, entre los ríos Dniéper y Don; también se han explotado grandes depósitos de la cuenca carbonera de Kuznetsk, en Siberia occidental. Los yacimientos carboníferos del noroeste de China, que están entre los mayores del mundo, fueron poco explotados hasta el siglo XX.
Cuando los expertos realizan estimaciones sobre la cantidad de carbón en el mundo, distinguen entre reservas y recursos. Se consideran reservas los depósitos de carbón que pueden ser explotados con la tecnología existente, es decir, con los métodos y equipos actuales. Los recursos son una estimación de todos los depósitos de carbón existentes en el mundo, independientemente de que sean o no accesibles desde el punto de vista comercial. Las exploraciones geológicas han permitido localizar los yacimientos de carbón más extensos del mundo. En 1997 las reservas mundiales de carbón ascendían a 1,04 billones de toneladas y los recursos se estimaron en 9,98 billones. Geográficamente estas reservas se distribuyen así: Europa, incluidas Rusia y las antiguas repúblicas soviéticas, 44%; Norteamérica, 28%; Asia, 17%; Australia, 5%; África, 5%, y Sudamérica, 1%.

PRODUCCION DEL CARBON

La producción mundial de carbón en 1994 refleja la crisis de la minería en la Unión Europea (la producción bajó un 17,4%) y en Rusia (decayó en un 6,2%). En cambio se produjo un dinamismo en la industria carbonífera de Estados Unidos, China, India, Colombia y Australia, entre otros países. La producción total en el mundo ese año fue de 2.158,3 millones de toneladas, de las cuales China; estados unidos; india; rusia y australia

____________________________________________________________________


mapamundi
___________________________________________________________________

Inversión de OGX en perforación alcanzará US$2.000mn hasta 2012 - Brasil
La compañía brasileña de petróleo y gas OGX dispone de US$2.000mn para financiar sus planes de perforar 50 pozos en Brasil hacia el 2012, señaló a BNamericas un vocero de la empresa.
OGX ya está planeando la campaña de perforación para sus 22 bloques emplazados en 4 cuencas: Campos, Santos, Espírito Santo y Pará-Maranhão, agregó.
La firma podría recaudar el monto comprometido para la campaña de perforación a través de sociedades y nuevos negocios, de acuerdo con el funcionario.
No se entregaron más detalles.
La semana pasada, OGX comenzó a perforar el primer pozo en el bloque BM-S-29 de la cuenca Santos. La empresa tiene una participación de 65% en el bloque.
La compañía apunta a perforar otros seis pozos este año, dijo su director financiero, Faber Torres, durante una teleconferencia el 13 de agosto.
OGX es la mayor compañía privada de hidrocarburos de Brasil en términos de superficie exploratoria.
Por João Carvalho / Business News Americas
Villa defiende la creación de una gran empresa pública estatal carbonera
Archivado en:economía, energía, carbón, sindicato, asturias
EFE
Actualizado 13-08-2009 19:26 CET
Langreo.- El secretario general del SOMA-FIA-UGT, José Ángel Fernández Villa, ha apuntado hoy la necesidad de crear una gran empresa pública carbonera que, en su opinión, puede resultar "mucho más rentable y menos costoso económicamente, que es el objetivo que se plantea el Gobierno".
Durante una rueda de prensa, Fernández Villa, ha señalado en este sentido que la creación de dicha empresa, de "la que ya existió una experiencia", según ha recordado, "evitaría estar permanentemente en esta situación de incertidumbre a la que sectores muy determinados están sometiendo a la minería del carbón".
El secretario general del SOMA-FIA-UGT también considera necesario poner en marcha un plan de la minería y de Hunosa que "se mantenga hasta el 2012".
Según ha recordado, estos planes están autorizados hasta el 2010, ya que "si hay que negociar con la actual situación económica, conseguir avances va a ser dificultoso".
bibliografia.
*articulos y notias tomadas de:
-internet
-diferentes blogs de cultura general
-noticias
-wikipedia
-encarta 2009

miércoles, 12 de agosto de 2009

ELBLOGDELPROFE.BLOGSPOT.COM

ME PARECE INCREIBLE QUE EN ESTO TIEMPOS TAMBIEN LAS MUJERES LLEGUEN A CASOS COMO ESTOS DE VIOLACION Y SE SUPENE QUE EN EUROPA LA GENTE ES MAS AVANZADA MENTALMENTE Y AVANCES EN LA TEGN OLOGIA ADEMAS ES RARO LA VIOLACION DE UNA MUJER HACIA UIN HOMBRE.

lunes, 3 de agosto de 2009

" LLEGADA A LA LUNA O FARSA"


dicen que hace 40 años el hombre llego a la luna pero en mi opinión el hombre nunca llego y nunca llegara a la luna, ya que hay varios puntos que asi lo demuestran:

*la bandera, se ondeava cuando en la luna no hay aire, otras teorias decian que era que estaba arrugada por el largo viaje.

* las huellas ¿como es que el hombre deja huella y el apolo 11 no?.

*la falta de estrellas.

todo fue un invento de estados unidos para superar a rusia.